
Written by Valentin Gagarin (NGI project manager for the NixOS Foundation)

Summer of Nix is a coordinated effort to support free and open source software (FOSS)
projects that are funded by the European Commission's Next Generation Internet (NGI)
initiative through the NGI0 consortium coordinated by the NLnet Foundation.

The program's main objective is to make more software available as Nix packages or NixOS
service modules. This is in order to make the projects developed under NGI0 easier to obtain
and run – something that is not a given due to the complexities involved in software
development – and thus help end users and developers to reap the benefits of the public
funding campaign. Nix itself is a proven technology for highly repeatable software builds and
deployments, and supports an ecosystem of tools for building a fully transparent software
supply chain.

This year's primary goal was to showcase high-profile projects by enabling an exemplary
deployment experience on NixOS. Just as last year, we focused on open hardware, self-hosted
services, and federated social media.

Packaging artefacts for supported open source projects are now collected and presented in a
monorepo called NGIpkgs, which is modeled after Nixpkgs, currently the the largest, most up-
to-date software repository in the world. It also serves as a staging area for maintaining
software projects that may not (yet) fit into Nixpkgs. Experimenting with managing what
amounts to a highly structured software knowledge base already produced some innovations
we hope to eventually upstream to Nixpkgs.

The 2024 Summer of Nix program once again followed the original idea from 2021, inviting
early-career software professionals from all over the world to work, learn, and meet. This year
we concluded our trial of the mob programming format with a direct comparison to regular
teams. We also provided participants with a much tighter feedback loop, and actively
coordinated tasks and schedules based on a detailed formalisation of deliverables.

Intermediate status updates were posted in a NixOS Discourse thread.

• Activities from February 2024 to November 2024
• 27 people involved in 5 groups (2023: 18 in 3 groups)

◦ 16 Europe
◦ 5 North America
◦ 2 Southern Asia
◦ 1 Western Asia
◦ 1 Eastern Asia
◦ 1 Northern Africa
◦ 1 South America

2024 Summer of Nix program report

Summary

https://www.ngi.eu/about/
https://www.ngi.eu/about/
https://nlnet.nl/NGI0/
https://nlnet.nl/NGI0/
https://nlnet.nl/foundation/
https://nlnet.nl/foundation/
https://github.com/ngi-nix/ngipkgs/
https://github.com/ngi-nix/ngipkgs/
https://github.com/NixOS/nixpkgs/
https://github.com/NixOS/nixpkgs/
https://repology.org/repositories/graphs
https://repology.org/repositories/graphs
https://repology.org/repositories/graphs
https://repology.org/repositories/graphs
https://discourse.nixos.org/t/2024-summer-of-nix-program-updates/46053
https://discourse.nixos.org/t/2024-summer-of-nix-program-updates/46053


• 135 000 EUR allocated
• 87 890 EUR spent

◦ 32 214 EUR for NGI0 Review
◦ 26 661 EUR for NGI0 Entrust
◦ 28 015 EUR for NGI0 Core

• Time worked: 3333.5 h
◦ Average compensation: 26.36 EUR/h

• Worked on supporting 41 NGI-funded projects (2023: 22)
◦ Recorded 201 pull requests or issue comments (2023: 80)
◦ NGI0 Review: Finished all but one remaining and actionable requests

▪ Vula
▪ Libervia
▪ GNU Taler

◦ NGI0 Entrust: 6 large and 5 smaller projects packaged
▪ Atomic Data
▪ Nitrokey firmware
▪ Cryptpad
▪ Canaille
▪ Peertube plugins
▪ Libre-SOC
▪ Icestudio
▪ lib25519
▪ Servo
▪ Naja
▪ Inko

◦ NGI0 Core: 6 services and 2 libraries packaged
▪ SCION
▪ Open Web Calendar
▪ Omnom
▪ Openfire
▪ Gancio
▪ Misskey
▪ tslib
▪ Alive2

◦ Again, dozens stale projects from past years archived
• Monorepo

◦ Maintained weekly dependency updates
◦ Built an automatically generated project overview draft
◦ Currently maintaining 45 projects with 128 derivations and 23 services

▪ See graphical overview of component completion below
▪ See appendix for detailed completion status of all projects

◦ Of at least 450 eligible NLnet subgrants:

https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Vula/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Vula/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Libervia/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Libervia/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/GNUTaler/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/GNUTaler/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/AtomicData/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/AtomicData/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Nitrokey-3/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Nitrokey-3/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Cryptpad/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Cryptpad/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Canaille/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Canaille/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/PeerTube/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/PeerTube/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Libre-SOC-OpenPOWER-ISA/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Libre-SOC-OpenPOWER-ISA/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Icestudio/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Icestudio/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/lib25519/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/lib25519/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Servo/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Servo/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Naja/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Naja/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/inko/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/inko/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/SCION-1M/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/SCION-1M/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/OpenWebCalendar/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/OpenWebCalendar/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Omnom/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Omnom/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Openfire-IPv6/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Openfire-IPv6/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Gancio/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Gancio/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Misskey/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Misskey/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/tslib/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/tslib/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Alive2/default.nix
https://github.com/ngi-nix/ngipkgs/blob/51b0776f33f94890d07a878bae38a01d1e38b42b/projects/Alive2/default.nix
https://ngi-nix.github.io/ngipkgs/
https://ngi-nix.github.io/ngipkgs/


▪ 170 software projects have some Nix packaging (including upstream)
▪ ca. 100 are under continuous integration

▪ More than 200 are unpackaged
• Outreach

◦ Participated in a podcast recording of Full time Nix
◦ Recorded 7 mob programming sessions
◦ 9 Summer of Nix participants attended NixCon 2024, 2 presented a talk about their

experience
◦ Participated in the NGI0 communications working group meetings and relayed

messaging to the Nix community
◦ Started public discussion in the Nix community on improving cost effectiveness and

adjusting implementation strategy for Summer of Nix

Implementation Status

Derivations 128 128

Services 23 26

Tests 20 27

Examples 19 27

Implemented Missing

This year's main achievement is that we have enabled a turn-key deployment experience for a
number of highly visible, maturing software projects that would otherwise have prohibitively
complex setups.

We also made some progress with presentation and discoverability of results, primarily by
clarifying requirements for the underlying information architecture. But emphasis was clearly
on delivering working software.

The program's public reach has shrunk compared to last year, with view counts between 150
and 1700. On the one hand, this is because we put much less emphasis on active storytelling
and publicity. On the other hand and more importantly, the Nix community, our primary
audience, went through a governance crisis this year. This resulted in many people leaving,
and the surrounding events likely consumed most attention.

The developments in the Nix community also resulted in some ongoing work getting delayed
and a larger than usual number of participants leaving the program early, which is why 34% of
the budget allocated for this year was not spent.

Evaluation

https://fulltimenix.com/episodes/valentin-gagarin
https://fulltimenix.com/episodes/valentin-gagarin
https://www.youtube.com/playlist?list=PLt4-_lkyRrON3T2VfDyilSoMeuWKecp_V
https://www.youtube.com/playlist?list=PLt4-_lkyRrON3T2VfDyilSoMeuWKecp_V
https://2024.nixcon.org/
https://2024.nixcon.org/
https://www.youtube.com/watch?v=f2zkEHPtKAM
https://www.youtube.com/watch?v=f2zkEHPtKAM
https://www.youtube.com/watch?v=f2zkEHPtKAM
https://www.youtube.com/watch?v=f2zkEHPtKAM
https://discourse.nixos.org/t/interviews-with-ngi-software-project-authors/51074
https://discourse.nixos.org/t/interviews-with-ngi-software-project-authors/51074
https://discourse.nixos.org/t/interviews-with-ngi-software-project-authors/51074
https://discourse.nixos.org/t/interviews-with-ngi-software-project-authors/51074
https://discourse.nixos.org/t/is-summer-of-nix-worth-the-money/43856
https://discourse.nixos.org/t/is-summer-of-nix-worth-the-money/43856
https://discourse.nixos.org/t/help-wanted-planning-for-summer-of-nix-2025/47556
https://discourse.nixos.org/t/help-wanted-planning-for-summer-of-nix-2025/47556
https://github.com/ngi-nix/summer-of-nix/blob/e356ebc93a25531bf380fbef7761acafccda0308/2024/artefacts.svg
https://github.com/ngi-nix/summer-of-nix/blob/e356ebc93a25531bf380fbef7761acafccda0308/2024/artefacts.svg


• Collaboration: Participants and authors of some projects successfully worked together
• Output: Many more projects were worked on and completed than last year
• Monorepo: All tested code was continuously provided with up-to-date dependencies and

kept in working state
• Scope: Defining and obtaining more concrete success metrics enabled better overview and

planning
• Consistency: More proactive coordination resulted in overall positive participant feedback

and kept focus until the end
• Continuity: The program was active throughout most of the year, and most requests by

stakeholders were addressed within reasonable time
• Diversity increased: only a proxy metric, but 5 of 27 participants (18%) used pronouns

other than "he/him" (2023: 1, 5%)

All of these achievements build on dedicated time investment:

• I actively tasked contributors to contact certain project authors and provided guidance on
how to communicate.

• Team leads put in extra effort to select suitable candidates and helped them deliver good
outcomes

• We allocated extra budget for monorepo maintenance (ca. 800 EUR per month)
• We strengthened project management compared to last year, by establishing tighter

feedback loops, and by involving more people in triaging projects and refining our
workflows. This led to improved structure, coordination, and continuity, but (together with
underspending the development budget) resulted in 25% overhead costs.

• While preparing our call for participants, we reached out to 22 organisations promoting
diversity in tech, receiving 3 replies.

The 2023 Summer of Nix report stated improvement goals, which we mostly reached:

• Improve the technical introduction so participants can get started more quickly.

Two of the four team leads were Nixpkgs maintainers, and set up their groups around a
mentorship model, which clearly yielded better results (7 mid-to-large and 10 smaller vs. 1
large and 4 mid-sized projects). Independently produced improvements to documentation
in the Nix ecosystem additionally allowed us to point beginners to known-good materials.

• Keep up motivation until the end.

Each group had a ceremonial debriefing call. We offered all participants an opportunity to
get a free NixCon 2024 ticket, and 9 attended.

• Consider more support roles, such as technical writer, community manager, web master.

We had a dedicated infrastructure specialist and a monorepo maintainer, which both
proved invaluable to keep participants unblocked. This should continue if possible. We

What went well

Improvements over last year

https://github.com/ngi-nix/summer-of-nix/blob/e356ebc93a25531bf380fbef7761acafccda0308/2024/participant-survey.html
https://github.com/ngi-nix/summer-of-nix/blob/e356ebc93a25531bf380fbef7761acafccda0308/2024/participant-survey.html


also planned work on contributor and user documentation as well as web design, but that
didn't materialise as intended. We should try again next year, and also consider a role
focused on increasing developer productivity.

This was also the first year where we had support from an administrative assistant hired
by the NixOS Foundation, who ensured timely payment processing.

• Make Summer of Nix more than just about NGI.

Given we faced enough challenges with running the program, we couldn't dedicate any
time to following up on this idea. It also seems not worth pursuing it in the next years,
either.

• Have at least one person available for answering questions and making more high-level
decisions.

We implemented a regular meeting schedule and I took a more hands-on approach to
project management and technical direction, both of which achieved the desired
outcomes.

• Refine administrative workflows and documentation.

After identifying time-consuming tasks, we did some streamlining and started introducing
automation where possible. This did not save time for organisers compared to last year,
but substantially reduced the number of interactions with participants regarding
paperwork, which shows in largely positive feedback on that matter. We also reduced both
the average and variability of payment request turnaround times.

Leveraging our ever-growing collection of accounting data allowed us gaining important
insights into the mechanics of the program. It also enabled us to run ever more detailed
spot checks for NLnet and drastically reduced the time required to produce financial and
quantiative progress reports. I recommend capturing more stuctured data as we go
(including, where it's sensible, backfilling records from previous years), and continuing
with judicious automation of repetitive tasks.

• Consolidate information in fewer places.

66 stale code repositories were archived, and we are left with 60 that may still be relevant,
many of which can eventually be integrated into Nixpkgs. There are only 2 private
repositories left for admin information, at least one of which will be decomissioned
eventually. We reduced the number of active Matrix rooms to 2 (one private, one public),
and left small group conversations to ad-hoc rooms.

Long-term we should strive to migrate all of the code to Nixpkgs, but this will require
upstream infrastructure improvements we currently cannot afford or expedite.

The direct comparison between mob programming and mentorship workflows has shown the
following: As we already found last year, mob programming is very good for equalising
knowledge distribution, and effective at building up group cohesion, which resulted in better

On mob programming



attendance than in mentored groups. But the additional cost introduced by multiple people
working on the same task is only worth it where sharing specialist knowledge is mission critical
and the knowledge can be reused for immediate follow-up tasks.

Mob programming also requires certain conditions to be met to really shine, such as a rather
high degree of professional maturity and a sufficiently diverse skill set among group
members. This mostly doesn't match our program or participant profile, and developing
packaging code allows for only limited reuse of acquired application-specific knowledge.

Working with individuals or pairs well versed in specific topics such as web services proved to
be both more effective and more economical.

My conclusion is that we should keep knowledge sharing as a very important concern, but
address it selectively depending on circumstances. There are also multiple measures we can
implement to increase team cohesion, such as brief daily meetings or special events. There
may still be cross-cutting concerns in our code base that could benefit from a group looking
into them together, but this is likely to be an exception to be dealt with case by case.

• User experience: Substantial tacit Nix knowledge is required to make use of software
distributed through NGIpkgs.

While we cannot address ecosystemic challenges given our primary delivery goals and
with our limited means, improving discoverability and streamlining interactions for
consumers of our software distribution would significantly increase the visibility and
impact of work done in the past years.

• Ecosystem coverage: Massive amounts of work for packaging NGI projects were already
done by volunteers, but we don't have much visibility into its quality and completion.

Triage and survey more projects to expose them in an overview. This will likely also require
refining our data models and monorepo architecture.

• Knowledge transfer across teams: We didn't address that need despite aspiring to it for
three consecutive years.

This requires additional coordination we weren't able to muster so far. It may help to
define some quantitative goals (such as targeting monthly exchanges) and distribute the
work involved (such as having each team lead organise an exchange).

• Long-term sustainability: We still rely too much on volunteering to keep packages
maintained.

Involve and train more project authors early on so they can tend to their own code. Project
authors are generally the most likely to stay around as both users of and contributors to
the Nix ecosystem if adopting Nix into their workflows provides them with benefits.

• Continuous improvement: Encourage and enable participants to improve Nix ecosystem
tooling and documentation as they work with it.

What should be improved



Contributor friction has been lamented repeatedly over the past editions, and we still lack
a handle on the problem. Embedding a feedback cycle ("boyscout rule") into our workflows
could address it to some degree.

• Cost effectiveness: Reduce average cost of deliverables.

Packaging a medium to large project with a service module currently on avergage costs us
around 5 000 EUR. This likely can be brought down to 3 000 EUR, without upstream
assistance, by organisational measures alone. It could be even less if we leverage project
author's domain expertise, since much of the time is spent on getting familiar with the
specifics of each project.

• Forecasting: Improve accuracy of cost estimates for future work.

One reason for suboptimal resource use was that program participants in 2023 and 2024
based their work primarily on project priority, with only very coarse complexity estimates
available. This repeatedly led to the sunk cost fallacy, which could have been avoided
through more disciplined forecasting based on priors. Leverage our accounting history for
predictions, and establish estimates as an integral part of the contributor workflow.

• Overhead: Reduce management expenses to below 15% of the spent budget.

We've built up enough of a system to keep administrative efforts to a minimum and divert
more energy to implementation tasks.

• Plan for additional outreach efforts.

This largely did not work out despite some brainstorming and attempts to make time,
primarily because participants were busy enough finishing packaging work they had
started. As a result we had roughly the same level of activity around publicity as last year.
While this has lower priority, next year we should still try to improve our outward
communication by hiring for a support role.

• Build a more reliable hiring pipeline.

Over the course of the year, we put some thought into improving talent acquisition, and
building stronger relationships with participants helped retain some of them for follow-up
work. Yet, staff planning, recruitment, and hiring still need more systematic integration
with our procedures. In particular we should work towards finding domain experts for
specific tasks that have shown to be time sinks for generalists.

We should also do more to identify prolific volunteers, and reward them for or support
them with finishing relevant ongoing work.

• Reduce experimentation: By now, we have learned enough organisationally, and now need
to increase goal-oriented productivity.

There are some smaller questions left we may need to answer by trial and error, but the
broad strokes of how to run the program effectively are well-established and documented
in these reports. Follow the insights collected over the years, and systematically
implement all necessary procedures and optimisations.



A big part of the friction I experienced comes from the sheer number of people involved, many
of whom were new to the Nix ecosystem. Originally this was by design in order to bootstrap
the program and grow the contributor community, and then became somewhat of a tradition.
As a result, we spent a lot of time with onboarding rather than delivering.

In 2025 we should de-emphasise the seasonal program model and shift to year-round staffing,
with much fewer, more experienced people working on longer-term engagements. I expect
this to help address many of the challenges discussed in this report.

As already stated in the 2023 Summer of Nix report, I recommend to keep narrowing the focus
on key strategic objectives in the remaining years 2025 and 2026. Apart from continuing to
improve implementation quality and program organisation, our next big goal is:

Enable as many project authors as possible to maintain their own Nix-based development and
distribution setups.

Their work is the cornerstone of the NGI0 ecosystem, and our mission is to support them with
ensuring repeatable builds and correct deployments for their software.

Lessons learned

Goals for the next years

Appendix

Participant survey

Completely packaged projects

Incompletely packaged projects

https://github.com/ngi-nix/summer-of-nix/blob/main/2023/report.md#goals-for-the-next-years
https://github.com/ngi-nix/summer-of-nix/blob/main/2023/report.md#goals-for-the-next-years


2024 Summer of Nix participant feedback
Total responses: 12

The overall program goals were clear to me

Not at all 0
A bit 1
Somewhat 1
Mostly 9
Fully 1

The purpose and details of my own tasks were
clear to me

Not at all 0
A bit 2
Somewhat 1
Mostly 4
Fully 5

I fulfilled my assignments

Not at all 0
A bit 1
Somewhat 1
Mostly 2
Fully 8

My work felt meaningful

Not at all 0
A bit 2
Somewhat 2
Mostly 1
Fully 7

I reached my personal goals for the program

Not at all 0
A bit 1
Somewhat 3
Mostly 3
Fully 5

I got timely and useful support by the
organisers

Not at all 0
A bit 0
Somewhat 2
Mostly 1
Fully 9

The workload was...

Much less than expect… 0
Less than expected 3
As expected 8
More than expected 1
Much more than expe… 0

The schedule was...

Not manageable 0
Hard to keep up with 1
Appropriate 7
Relaxed 3
Much too loose 1

I was motivated throughout my engagement

Not at all 0
A bit 0
Somewhat 2
Mostly 5
Fully 5

Collaborating with other participants was
pleasant

Not at all 1
A bit 0
Somewhat 0
Mostly 3
Fully 8

For me, tasks I worked on were...

Much too easy 0
Too easy 2
Appropriate 10
Too hard 0
Much too hard 0

Relative to other participants, my overall
experience level is...

Beginner 2
Junior 2
Mid-level 6
Senior 2
Expert 0



By participating in the program, I learned...

Nothing 0
Very little 0
Some things 3
Many things 3
A lot of things 6

I taught other participants...

Nothing 0
Very little 5
Some things 7
Many things 0
A lot of things 0

The compensation for my contribution was...

Much less than adequ… 0
Less than adequate 2
Adequate 8
More than adequate 2
Much more than adeq… 0

Participating in the program improved my
career opportunities

Not at all 0
A bit 1
Somewhat 8
Mostly 0
A lot 1
Fully 2

Participating in the program expanded my
professional network

Not at all 0
A bit 2
Somewhat 1
Mostly 3
A lot 1
Fully 5

If applicable: For reaching technical objectives,
mob programming was...

Very detrimental 2
Detrimental 0
Neutral 5
Helpful 2
Very helpful 2

If applicable: For learning new things, mob
programming was...

Very detrimental 1
Detrimental 0
Neutral 2
Helpful 1
Very helpful 7

If applicable: For learning to know fellow
participants, mob programming was...

Very detrimental 1
Detrimental 0
Neutral 2
Helpful 2
Very helpful 6

The paperwork (application, time sheets,
payment requests) was...

Very little 2
Not too much 4
Adequate 3
More than seems nec… 2
Way too much 1

Payments were timely

Not at all 1
A bit 0
Somewhat 4
Mostly 3
Fully 3

The program was well-organised

Not at all 1
A bit 0
Somewhat 2
Mostly 6
Fully 3

I am satisfied with the outcome of this year's
program

Not at all 1
A bit 1
Somewhat 3
Mostly 3
Fully 4



I would like to participate in the program again

Not at all 1
A bit 0
Somewhat 0
Mostly 3
Fully 7

I would recommend others to participate in the
program

Not at all 1
A bit 0
Somewhat 0
Mostly 1
Fully 10

I am satisfied with the direction the program is
taking

Not at all 1
A bit 0
Somewhat 1
Mostly 2
Fully 8



Implemented Missing

derivations

services

programs

tests

examples

Alive2

AtomicData

DMT-Core

Dokieli

Hypermachines

Icestudio

Inko

Kbin

KiKit

Libervia

Libre-SOC-OpenPOWER-ISA

LibreCastLiveStudio

Meta-Presses

Naja

Nitrokey-3

Openfire-IPv6

PeerTube

Pretalx

Servo

Stract

Vula

arpa2

lib25519

mitmproxy

tslib



Implemented Missing

derivations

services

programs

tests

examples

Aerogramme

Agorakit

CNSPRCY

Canaille

Cryptpad

Flarum

Forgejo

GNUTaler

Gancio

LiberaForms-E2EE

Misskey

Omnom

OpenWebCalendar

Pixelfed

Rosenpass

SCION-1M

gnunet

mCaptcha

ntpd-rs

wireguard


